
A Method to Construct Knowledge Table-base
in K-in-a-row Games

Chang-ming XU, Z.M. MA, Xin-he XU
Northeastern University

110004, Shenyang, Liaoning Province, P.R.China
Fax:+86-24-83681823, Phone:+86-24-83681582

changmingxu@gmail.com, mazongmin@ise.neu.edu.cn, xuxinhe@ise.neu.edu.cn

ABSTRACT
In any k-in-a-row game, the player should always analyze each
consecutive sequence in 4 directions, which consists of either the
void intersections or the intersections occupied by the same color
stones. Although the difficult problem in k-in-a-row game is that
any void intersection on board can be placed a stone on, just like
Go, however, the hints in k-in-a-row are far more than those in Go.
We find it is a good method to decrease the complexity of the k-
in-a-row games by using Connection to represent the states of the
game position. Then, a precise classification criterion for
Connection, as well as a precise classification for the intersections
is given. As the high-level knowledge of games seems hard to be
acquired, the program designers always resort to human masters.
However, we can construct a good knowledge table-base based on
above idea without masters.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representations (procedural and rule-based)

General Terms
Performance, Experimentation.

Keywords
Computer games, k-in-a-row, Knowledge Table-base.

1. INTRODUCTION
Connect(m, n, k, p, q) denotes a family games of k-in-a-row. There
are two players, the black and the white, in a connect(m, n, k, p, q)
game. The first player, always the black side, places q stones for
the first move. Then, two players alternately place p stones on
m×n board in each turn. The player who gets k consecutive stones
first win. A very interesting k-in-a-row game is connect(m, n, 6, 2,
1), Connect6, is first introduced in [1][2]. In this paper, we will try
to show how to construct a knowledge table-base for k-in-a-row
games. The prominent characters distinguishing Connect6 from
other traditional k-in-a-row games are its potential fairness and the

simplicity of rule, which is discussed in [3]. Connect6 is more
complex than all the solved games, and its board size is
unrestrained. The states space complexity is 10172, and the game
tree complexity is 10140

 for connect(19, 19, 6, 2, 1). The
discussion about the complexity of computer games is introduced
in [4] [5].

Although the method in this paper is applicable to most k-in-a-row
games, examples are only suitable to Connect6. The rest of this
paper is organized as follows. In section 2 we introduce
Connection which is the most important concept in our work. In
section 3 a series of religious definitions of Connection types are
given. In section 4 we evaluate all the types of Connection, and
discuss how to construct a knowledge table-base for each shape of
all the Connections. In section 5 each type of the intersections is
well defined and a more complex knowledge table-base is
presented. At last, we give conclusions in section 6.

2. CONNECTION IN K-IN-A-ROW
To analyze a game position efficiently, we proposed a novel
method originally that regards a straight line on board as several
segments, each of which is called Connection. The concept,
Connection, is a foundation to our work.

2.1 Definition of Connection

Figure 1. Encoding intersections on 13×13 board

To represent a game position state, the most popular method is to
use an array. Each element of the array has a value to represent
the state (void, black stone, or white stone) of the corresponding
intersection on board. We call above method as IB (Intersection
Based) method, shown in Figure 1. Although it is an intelligible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.
 929

way to describe the state of game position in a program, the
implementation always results in inefficient.

In the games of k-in-a-row, the direct relations only exist among
the stones in a straight line. For example, in Figure 2, there are 3
segments marked with , , and respectively, each of which
consists of either intersections occupied by the same color stones
or void intersections.

Figure 2. Connections and its binary representation

We use Connection to describe the segments shown in Figure 2
and to record the state of k-in-a-row game position. Here, we
named our new method as CB (Connection Based) method.
Contrary to IB, the merits of CB are: retaining the natural relation
among stones and getting rid of the redundant of the description
for the game position state.

Definition 1 (Connection). On n×n k-in-a-row board, a
Connection is a maximal consecutive sequence, which consists of
either void intersections or intersections occupied by stones in the
same color in a straight line. Generally, c is used to represent a
Connection in this paper.

Figure 3. Directions of Connections on 13×13 board

Definition 2 (Properties of Connection). On n×n k-in-a-row
board, the properties of Connection are:

(1) The head of Connection. Designate the intersection with the
smallest serial number as the head of Connection. In Figure 3 the
intersection marked by a solid dot indicates that the intersection
closest to it will be selected as the head of Connection in a certain
line. (2) The direction of Connection. Designate 4 directions for
Connections on the board: 45°, 90°, 135° and 180°. As an
exception, the direction of Connection in an isolated line is always
from right to left, e.g. Connections in Figure 2. (3) The length of
Connection. The number of intersections in c is defined as the
length of c, written as |c|. If |c|<k, c is useless according to the
game rules. So, we assume that a sequence c is a Connection

implies |c|�k. (4) The color of Connection. For a Connection with
black (white) stones, the color is black (white). For a void
Connection (without any stone in it), the color can be black, or
white. Depending on the concrete game position context, the color
of a void Connection can be different. (5) The shape of
Connection. Denote the shape of c as ||c||. ||c1||=||c2||, iff: 1) |c1|=|c2|;
2) �i�{0, 1, …, |c|-1}, If ith intersection of c1 is void, so does ith
intersection of c2; vice versa.

2.2 Examples for Connection
In Figure 2, there exist and only exist 3 Connections, which are
Connection 0~10, Connection 12~18, and Connection
8~18. The head of Connection is 0th intersection, the length is
11, the color is black; the head of Connection is 12th
intersection, the length is 7, the color is black; the head of
Connection is 8th intersection, the length is 7, the color is white.

Figure 4. Void Connection

The intersections sequence from 0 to 7 is not a Connection, as
well as the sequence from 4 to 10, because they do not obey the
constraint that Connection must be the maximal sequence that
consists of either void intersections or intersections occupied by
the same color stones. We should indicate that there are two void
Connections actually in Figure 4. One is black and the other is
white, and they overlap each other. On n�n board, only the initial
void line contains two void (with different colors) Connections.
The color of void Connection in Figure 2 will only be black,
can not be white. Because we can easily confirm that is a white
Connection, if is a white Connection too, according to
definition 1, we will draw that both and are the maximal
white consequences. Conflict obviously! Here, if we regard as
a black Connection, it accords with definition 1 well. The other
sequence, such as the one from 0 to 3, and the one from 8 to 10
are not the Connection, because the length of them is less than 6.

However, the meanings of Connection in this paper have become
more plentiful. Firstly, Connection implies a place on the board
that a 6-in-a-row may occur. Secondly, it clearly outlines all the
spheres of influence belonging to the black and the white in a line.
Although the spheres of influence may overlap, they keep
independent and integrated to each other as whole units.

2.3 Representation of Connection Shape
The most complex and most important property of Connection is
its shape. To establish the relation between the shapes of
Connections with a natural number, Lemma 1 is given.

Lemma 1. n � N, N is the natural number set. 6�n. Cn = {||c|| | |c|
= n}, Mn = {m} = {0, 1, 2, …, 2n-1}, Then

�: ||c|| � m = �(||c||)

is a bijection from Cn to Mn.

In the rest of this paper, �(||c||) is the function, and the variable of
it is Connection c, the result of it is a digit corresponding with the
shape of c, just like shown in Figure 2. That is, one bit of the digit
is corresponding to one intersection of Connection, and the lowest
bit of the digit is corresponding to the head of Connection. The

930

idea Mapping a Connection shape to a natural number is inspired
by the bitboard in computer games, see [6][7].

Definition 3 (Binary tuple representation for the shape of
Connection). In connect(n, n, k, p, q), the shape of c can be
described as (|c|, �(||c||)).

0C

1C

2C

3C

Figure 5. Connections on board for connect(13, 13, 6, 2, 1)

Lemma 2. In connect(n, n, k, p, q), n�N, 6�n. C = {||c|| | |c| �n},
and M = {0, 1, 2, …, 2n+1-2k-1}. Then

�: ||c|| � 2|c| � 2k + �(||c||) = �(||c||)

is a bijection from C to M. where, �(||c||) is the binary digit of ||c||
by the mapping way shown in Figure 2.

Definition 4 (Unary tuple representation for the shape of
Connection). In connect(n, n, k, p, q), the shape of a connection c
can be represented as �(||c||).

In Figure 5, ||c1||�||c2||, �(||c1||) = 216, �(||c2||) = 216, |c1| = 8 and |c2|
= 11. Based on Definition 3, ||c1|| can be described as (8, 216), and
||c2|| can be described as (11, 216). While �(||c1||) = 2|c1| � 2k +
�(||c1||) = 28 � 26 + 216 = 408 and �(||c2||) = 2|c2| � 2k + �(||c2||) =
211 � 26 + 216 = 2200. So, ||c1|| can be represented by 408, and
||c2|| can be represented by 2200 according to Definition 4. In
some cases, the form of definition 3 is preferred, because we can
easily know the real shape of Connection c by the binary value of
�(||c||). While in other cases, the form of definition 4 is preferred.
For example, if we want to know quickly whether a stone has been
placed on ith intersection of c, we have to resort to the form of
definition 3. While to allocate each shape an equal size memory,
to make each of them have a unique address, and to keep all the
addresses consecutive, definition 4 is needed.

3. FORMAL DESCRIPTION FOR TYPES
OF CONNECTION
It is discussed the importance of the shape of a sequence of
Connect6 very well in [1][2]. Here, we will re-address such a
subject, and propose a precise classification of Connection. The
concept of Connection reflects the natural relations among
intersections. Each Connection will have a specific type which is
determined by their shape. The set of all the Connections can be
divided into several disjoint sets according their shapes.

Definition 5 (Several operations and predicates). Given a
Connection c, all the intersections mentioned below in this

definition, such as x, y, z, s, and t belongs to c, the operations and
predicates are given as follows:

(1) The PLACE(c, x, y) operation. It will place zero, one or two
stones on the intersections x and/or y. The details of the operation
are as follows. 1) If x is void, it can be taken by a stone with the
same color as c; otherwise, the operation on x is ignored. 2) The
operation on y is the same with x. PLACE(c, x, x) can be
simplified as PLACE(c, x). (2) The C6(c) predicate. C6(c) is true
means that a 6-in-a-row has been formed in c. If false, we denote
it as ¬C6(c). (3) The G(c, x, y, …, z, …) predicate. G(c, x, y, …,
z, …) is true means that a 6-in-a-row will be formed in c after the
following operations: 1) if x is void, it can be taken by a stone
with the same color as c; Otherwise, placing a stone on x will be
ignored. 2) The operation on all the other intersections y, …, z, …,
etc. is the same with x. (4) The H(c, x, y, s, t) predicate. H(c, x, y, s,
t) is true means that there will form a new Connection c� after the
following operations: 1) if x is void, place an opposite stone on it;
Otherwise, placing a stone on x will be ignored. 2) The operation
on y is the same with x. 3) Then there will form at most 3
sequences, and one Connection c� among which will make G(c�, s,
t) true.

The universal set of all the Connections can be divided into
several disjoint subsets according to their functions of attacking or
defending. One subset denotes one type of Connections.
Connections belong to the same subset have the same Connection
type.

Definition 6 (Types of Connection). Any Connection must
belong to one of following subsets: win (C6), definitely win (DW),
live-5 (L5), dead-5 (D5), live-4 (L4), dead-4 (D4), live-3 (L3),
sleep-3 (S3), dead-3 (D3), live-2 (L2), dead-2 (D2), live-1 (L1),
dead-1 (D1), void (V). The type Connection c is denoted as 	(c).

Table 1. Connection Types

NO. Type Iff
1 C6 C6(c)
2 DW (�x)(�y)(�s)(�t)H(c, x, y, s, t)

3 L5 (�x)G(c, x) � (�x)(�s)(�t)H(c, x, x, s, t) �
(�x)(�y)(�s)(�t)�H(c, x, y, s, t)

4 D5 (�x)G(c, x) � (�x)(�s)(�t)�H(c, x, x, s, t)

5 L4 (�x)�G(c, x) � (�x)(�y)(�s)(�t)�H(c, x, y, s, t)
� (�x)(�y)G(c, x, y) �(�x)(�s)(�t)H(c, x, x, s, t)

6 D4 (�x)�G(c, x) � (�x)(�y)G(c, x, y) �
(�x)(�s)(�t)�H(c, x, x, s, t)

7 L3 (�x)(�y)�G(c, x, y) � (�x)L4(PLACE(c, x))

8 S3 (�x)(�y)�G(c, x, y) � (�x)�L4(PLACE(c, x)) �
(�x)D4(PLACE(c, x))�(�x)(�y)L5(PLACE(c, x, y))

9 D3 (�x)(�y)�G(c, x, y) � (�x)D4(PLACE(c, x)) �
(�x)(�y)�L5(PLACE(c, x, y))

10 L2 (�x)(�y)(�z)�G(c, x, y, z) �
(�x)(�y)L4(PLACE(c, x, y))

11 D2 (�x)(�y)(�z)�G(c, x, y, z) �
(�x)(�y)D4(PLACE(c, x, y))

12 L1 (�x)(�y)(�u)(�v)�G(c, x, y, u, v) �
(�x)L2(PLACE(c, x))

13 D1 (�x)(�y)(�u)(�v)�G(c, x, y, u, v) �
(�x)�L2(PLACE(c, x)) � (�x)D2(PLACE(c, x))

14 V c is a void connection

931

14 Connection types and their necessary and sufficient conditions
are listed in Table 1. The definitions of some types of Connections
are dependent on the others in the table. Concretely,
DW
,
L5
,

D5
,
L4
, and
D4
 are dependent on
C6
; while
L3
,
S3
,

D3
,
L2
,
D2
,
L1
, and
D1
 are dependent on
DW
,
L5
,

D5
,
L4
,
C6
; only
V
 are directly given, due to simple
features. We will give the meanings of above Connection types,
and take
DW
,
L4
as examples. For the attacker, “DW(c) is
true” implies the Connection c possesses such a character: even
the defender try his best to defend, that is, putting his own two
stones on any two intersections, the defender couldn’t escape from
the state of lose. “L4(c) is true” implies that: 1) if the defender
gives up the chance to defend at all, the attacker will win; 2) if the
defender defends with one stone only, the attacker win; 3) if the
defender defends with two stones, a strategy to prevent the
attacker to win exists.

We find the types
D2
,
L1
,
D1
, and
V
 are very popular, but
work little. 4 types mentioned above are merged into one type
O
.
Thus, the universal set of Connection types is Tconn = {
C6
,

DW
,
L5
,
D5
,
L4
,
D4
,
L3
,
S3
,
D3
,
L2
,
O
}.

4. EVALUATION OF CONNECTION
The types of Connection are used to reflect their relative
importance. So, we must know the total ordering relation on Tconn.
Then the concept of promotion between Connections is given,
which is used to describe if a Connection promote to a better one,
and how a Connection promote to a better one.

4.1 Total Ordering Relation
Different types of Connections have different threats to the
opposite. To discriminate the importance of Connection by its
shape, a total ordering relation on Tconn is needed. Let
represents the total ordering relation on the set Tconn. a b means
Connection type a is not better than b. According to our
experiments, the relation is presented as follows:

O

L2

D3

S3
 L3

D4

L4

D5

L5

DW

C6
.

4.2 Knowledge Table-base of the Shapes
If all the knowledge about the shapes of Connections not only can
be saved in advance, but also can be retrieved easily, the
efficiency of the program will be enhanced greatly. In connect(n,
n, k, p, q), the number of all the shapes is 2n+1-2k. Assume the
information of each shape occupies one unit memory, the space
complexity of the knowledge table-base is shown in Table 2.

Table 2. Size of knowledge-base

Games 19�19
Connect6

15�15
Connect6

13�13
Connect6

15�15
Go-Moku

Space
Complexity 999.94K 63.93K 15.94K 63.97K

Table 2 shows that the size of the memory for the knowledge
table-base is acceptable. Given a shape of any Connection, its
entrance of the table-base can be obtained easily based on
Definition 4. The most simple knowledge table-base is only to
save the type of each connection. Given a connection c, the
entrance of c in table-base is �(||c||), then 	(c) is saved there.
Merits to construct a knowledge table-base are not only
converting the online computation to offline, but also to help

reusing the knowledge of the shape.

4.3 Promotions among Types
Definition 7 (Promotions). 	(c) �
C6
, x�{0, 1, …, |c|-1}, c� is
formed by PLACE(c, x). is the total ordering relation on Tconn.
We say the void intersection x let Connection c be promoted to
Connection c�, if 	(c) 	(c�). The promotion can be denoted as
	(c)�	(c�).

To introduce the concept, promotions among the Connection types,
aims at answering two questions: 1) Whether a stone is placed into
a Connection make it better? 2) Given a certain type Connection,
what target types it can promote to? According to the total
ordering relation on Tconn, The accepted promotion is listed in
Table 3, and The original type is written in lowercase, and the
target type is written in capital. “�” indicates the promotion exists,
while “�” not.

Table 3. Promotions among Connection types

C6 DW L5 L4 D5 D4 L3 S3 D3 L2 O

dw 	 � � � � � � � � � �

l5 	 	 � � � � � � � � �

l4 � 	 	 � � � � � � � �

d5 	 	 	 � � � � � � � �

d4 � 	 	 	 	 � � � � � �

l3 � � � 	 � 	 � � � � �

s3 � � � � � 	 	 � � � �

d3 � � � � � 	 	 	 � � �

l2 � � � � � � 	 	 	 � �

o � � � � � � � 	 	 	 �

Table 3 contains some redundant information, and they are: (1)
The unnecessary promotions. Although the promotion D5�L5 is
acceptable, we should avoid this happening for ever. It is obvious
that the player can change the Connection shape type from
D5

to
C6
 through putting a same color stone at any time and win at
once. So, D5�L5 is irrational and should be eliminated from the
table, due to miss the opportunity to win. (2) Never consider

DW
 as a target type. From Table 3, we know original types can
promote to
DW
 directly are
L5
,
D5
,
L4
 and
D4
.
Promotions, such as D5�DW and L5�DW, should be forbidden,
due to missing the opportunity to win.

We get Table 4 by eliminating the useless promotions from Table
3. In Table 4: 1) using

 represents a forbidden promotion; 2)
dropping
DW
 from the set of target types of promotion.

Table 4. Reduced Promotions among Connection types

C6 L5 L4 D5 D4 L3 S3 D3 L2 O

dw 	 � � � � � � � � �

l5 	 � � � � � � � � �

l4 � 	 � � � � � � � �

d5 	
� � � � � � � � �

d4 � 	 	 	 � � � � � �

l3 � � 	 � 	 � � � � �

932

s3 � � � � 	 	 � � � �

d3 � � � � 	 	 	 � � �

l2 � � � � � 	 	 	 � �

o � � � � � � 	 	 	 �

5. TYPE OF INTERSECTION
Based on the promotion among Connections, the types of
intersections are given. To accelerate the program’s execution, an
enhanced knowledge table-base is given.

5.1 Types of Intersections
Any Connection has a determinate type, so does any void
intersection. Just because putting a stone on an intersection may
change the type of the Connection, the importance of an
intersection has a close relevancy with the type of Connection. In
this case, the value of the intersection can be evaluated by a newly
formed Connection through putting a stone on it.

Let Tis = {
C6
,
DW
,
L5
,
D5
,
L4
,
D4
,
L3
,
S3
,
D3
,

L2
,
O
,
U
}. Where, the new introduced type
U
 is
associated with an intersection which should never be put a stone
on, such as the void intersections in a sequence whose length is
shorter than 6. To evaluate an intersection, we also need a total
ordering relation on Tis. For example,
U

O

L2

D3

S3

L3

D4

L4

D5

L5

DW

C6
. Given
a Connection c, its type is �(c) �
C6
. c� = PLACE(c, x), the type
of intersection x of c, written as �(c, x). The algorithm to figure out
the type of each intersection in a Connection is as follows.

(1) If x is nonvoid, �(c, x) =
U
. End.
(2) If �(c) � {
DW
,
L5
,
D5
,
L4
,
D4
}, then

1) If c promotes to c�, then �(c, x) = 	(c�). End.
2) If c promotes to c�, then �(c, x) =
U
. End.

(3) If �(c) � {
L3
,
S3
,
D3
,
L2
,
O
}, then
1) If c promotes to c�, then �(c, x) = 	(c�). End.
2) If c promotes to c�, then �(c, x) =
O
. End.

To a player, �(c, x) =
U
 means x is refuted by c, and should
never to be taken by any stone; �(c, x) =
O
 means whether x is
taken by a stone or not seems unprevailing; Otherwise, placing a
stone on x should be encouraged, and to what extent the encourage
should be decided by the type of x and the relation .

5.2 Knowledge Table-base of Intersections
Knowledge table-base of shapes in section 4.2 accelerates the
program, because the offline calculation saved the online
calculation. But the type of void intersection is needed frequently,

especially in the procedure of move generation and move
selection. To figure out the type of each intersection in an n-length
Connection, we will generate no more than n new Connection and
need to know the type of them, and to query form the table-base.
So, the complexity to calculate entrances of the type of each
intersection within single Connection in the knowledge table-base
is O(n). Furthermore, the jumped entrance of table-base may cause
the visiting to such a table-base inefficient, because the method
isn’t friendly to the cache. The way to improve it is to save the
type of each intersection into table-base. In connect(n, n, k, p, q),
there needs n+1 units to store the knowledge of a Connection, the
first unit of which is stored the information of Connection type, (i-
1)th intersection type is stored in the following ith unit.

6. CONCLUSION AND FUTURE WORK
We propose a novel method to construct the knowledge table-base
in k-in-a-row games. The concept of Connection, Connection type,
intersection type, and the composite type of intersection all
simplified the design of the program and brought many
enhancement of it. The most important way to improve the
efficiency of the program is the construction of the knowledge, in
which the Connection type and the intersection type is stored. In
the future, we will give more attention to it, and try to get some
meaningful results.

7. REFERENCES
[1] Wu I-C, Huang D-Y, A New Family of k-in-a-row Games, in
Proceedings of The 11th Advances in Computer Games
Conference, 2005, 88-100.
[2] Wu I-C, Huang D-Y, Chang H-C, Connect6, ICGA Journal, 28,
4 (Dec. 2005), 234-242.
[3] Hsieh Ming-Yu, Tsai Shi-Chun, On the fairness and
complexity of generalized k-in-a-row games, Theoretical
Computer Science, 385, 1-3 (Oct. 2007), 88-100.
[4] H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van
Rijswijck. Games solved: Now and in the future. Artificial
Intelligence, 134, 1-2 (Jan. 2002), 277-311.
[5] Allis LV, Searching for solutions in games and artificial
intelligence. Ph.D. thesis, Maastricht, University of Limburg,
1994.
[6] Heinz EA, How Dark Thought Plays Chess. ICCA Journal, 20,
3 (Sept. 1997), 167-176.
[7] Pablo S-S, Ramón G, Fernando M, Diego R-L, Agustín J.
Efficient Search Using BitBoard Models. In Proceedings of
International Conference on Tools with Artificial Intelligence,
2006,132-138.

933

